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The BRISA problem was to calculate the real time travel information using the 
Via-Verde (VV) technology (floating data) and automatic data for the area defined 
by the triangle A5 Lisboa-Cascais and A9 Estádio-Queluz. 

To solve the problem we will be able to make use of the large amounts of traffic 
data that will soon become accessible electronically in real time; indeed there are two 
different information sources producing different data for the same object and context. 
There is a tremendous demand for simple information concerning just the travel-time 
for a single origin-destination and service level for a motorway section. It was sug-
gested that we should use a Hybrid Traffic Flow Modelling to cope with this challenge. 

There are some natural scales that bound the range of possible models that 
can be constructed. Namely 

•  time-scale: t0 ∼ O(103)s 
•  vehicle separation time: T = k−1 ∼ O(10)s, 
•  drivers reaction time: Δt ∼ O(1)s, 
•  typical distance between cars: h ∼ O(10)m, 
•  typical car velocity: u ∼ O(10)m/s, 
•  length scale: L ∼ O(103)m. 

Note that for N given cars we have typically Nh ∼ 103 m, but the journey length 
is ∼ O(105)m. The meaning of these scales will become clear in what follows.



236 2007 — ReseaRch & Development + InovatIon

1. INTRODUCTION

Let us briefly outline the content of this report. The basic model approaches for 
vehicle traffic are described in section 2; the microscopic follow-the-leader models 
are explain in subsection 2.1 and the macroscopic traffic models in subsection 2.2, 
see [1] and references therein. In subsection 2.1 we give an explicit solution for the 
dynamics of the cars using “Pipes rule”. Using this rule we also propose a statistical 
physics model which will allow us to estimate, in a simple manner, the density of the 
cars and the mean velocity of the car flow. The same rule is used, as suggested by 
BRISA, for the construction of a hybrid partial differential equation in section 3.

2. BaSIC mODellINg aPPROaCheS

2.1 Microscopic follow-the-leader Models

Early microscopic traffic models were proposed by Reuschel (1950) and Pipes 
(1953) [1,2]. Microscopic traffic models assume that the acceleration dvi(t)/dt of a 
vehicle i is given by the behaviour of the next vehicle ahead i+1. Therefore we can 
write the following general model of driver behaviour:

  
(1)

Here ξi(t) corresponds to a fluctuation term and, fi,i+1(t) ≤ 0 describes the 
normally repulsive effect of the vehicle i+1, which is generally a function of the 
relative velocity Δvi(t) = vi(t) − vi+1(t), the velocity vi(t) of vehicle i due to the velocity-
dependent safe distance kept to the vehicle in front, the headway distance di(t) = 

xi+1(t) − xi(t) or the clearance distance si(t) = di(t) − li+1, with li meaning the length 
of vehicle. Consequently, for identically behaving

Figure 1: Diagram for the distribution of vehicles.

vehicles with vi
0 = v0, τi = τ, and fi,i+1(t) = f, we would have

  (2)
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If we neglect fluctuations and introduce the traffic-dependent velocity

  
(3)

to which driver tries to adapt, we can considerably simplify the generalized  
behavioral model to

  
(4)

Models of the type of equation (4) are called follow-the-leader models. One 
of the simplest examples results from the assumption that the clearance distance is 
given by the velocity-dependent safe distance s*(vi) = s’ + Tvi, where T has the mean-
ing of the (effective) safe time clearance (also called separation time). This implies 
si(t) = s* (vi(t)) or, after differentiation with respect to time, 

  
(5)

A simple Laplace transform calculation gives 

 
 

(6)

where, v∞ is the maximum velocity permitted (leading car velocity), N is the total 
number of cars and i = 1,2,…,N and Γ(·) is the Euler gamma function.

Unfortunately, this model, and the solution given by (6), does not explain the 
empirically observed density waves. Therefore one has to introduce an additional 
time delay Δt ∼ O(1)s, reflecting the finite reaction time of drivers. This yields the 
following stimulus-response model (also known as Pipes law) given by

 

  

(7)

Here, 1/T is the sensitivity to the stimulus. This equation belongs to the class of delay 
differential equations, and solutions can be unstable for Δt > 0. Indeed, for the above 
model, Chandler et al. (1958) [3] showed that a variation of individual vehicle velocities 
will be amplified under the instability condition Δt/T > 1/2. As a consequence, the non-
linear vehicle dynamics finally gives rise to stop-and-go waves, and also to accidents.

2.1.1 Statistical physics model

Statistical physics models for traffic flow are usually named Toda-Morse chains: 
these are models in which each car is a particle coupled to a “heat bath” and moving 
on a ring with particular asymmetrical springs among neighbours [1]. For the case 
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under consideration we can construct a simple statistical physics model, starting by 
integrating Pipes rule (7), with Δt = 0. One gets

 
  

(8)

where ci, are constants determine by the initial conditions and k = 1/T. If we assume 
that vi(0) = 0 and that xi(0) = ih then it follows that ci+1 − ci = −h. Introducing 
(8) in (7) yields

  
(9)

Defining the momentum pi = ẋ  i one can see that we have a Hamiltonian system 
with a “local” Hamiltonian

  

(10)

for which the equations of motion read

  
(11)

  
(12) 

The total Hamiltonian is the given by

 
 

(13) 

The statistical properties of this system are completed determined by the partition 
function

 
 

(14) 

where L ∼ O(103)m the lengthscale, v∞ the maximum permitted velocity and β an 
arbitrary parameter, the equivalent of the inverse temperature for the “gas” of cars. 
The partition function (14) permits to define a distribution probability function given 
by, taking (x, p) = (x1,x2,…,xN,p1,p2,…,pN),

 
  

(15) 

The problem now rests in evaluating expression (14) for the partition function. 
Once this is done, it is possible to obtain the mean velocity, mean density, etc, as a 
function of separation time k−1 and the inverse temperature β. The canonical expres-
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sion the mean value of any function h = h(x, p) is given by

 
 

(16) 

thus allowing us to estimate the mean velocity < v > as a function of the mean 
density < ρ >, which can be used to solve the equations of a macroscopic model.

2.2 Macroscopic traffic Models 

In contrast to microscopic traffic models, macroscopic ones are restricted to the 
description of the collective vehicle dynamics in terms of the spatial vehicle density 
ρ(x,t) per lane and the average velocity V(x,t) as a function of the freeway loca-
tion x and time t. Macroscopic models have often been preferred to car-following 
models for numerical efficiency. Also, some favourable properties are (i) their good 
agreement with empirical data, (ii) their suitability for analytical investigations, (iii) 
the simple treatment of inflows from ramps, and (iv) the possibility of simulating the 
traffic dynamics in several lanes by effective one-lane models considering a certain 
probability of overtaking [1]. 

The oldest and still the most popular macroscopic traffic model goes back to 
Lighthill and Whitham (1955). Their fluid-dynamic model is based on the fact that, 
away from on or offramps, no vehicles are entering or leaving the freeway (at least 
if we neglect accidents). This conservation of the vehicle number leads to the con-
tinuity equation

  
(17)

Here

  
(18)

is the traffic flow per lane, which is the product of the density and the average 
velocity. We may apply the so-called material derivative, moving with the cars,

  (19)

to rewrite equation (17) in the form 

  (20)

from which we conclude that the vehicle density increases in time dρ(x,t)/dt > 0, 
where the velocity decreases in the course of the road ∂V/∂x < 0, and vice versa. 



240 2007 — ReseaRch & Development + InovatIon

Moreover, the density can never become negative, since ρ(x,t) = 0 implies dvρ(x,t)/dt 

= 0. Equation (17) is naturally part of any macroscopic traffic model. The difficulty 
is to specify the traffic flow Q(x,t). Lighthill and Whitham assume that the flow is 
simply a function of the density

  
(21)

Here, the fundamental (flow-density) diagram Q(ρ) and the equilibrium velocity-
density relation V(ρ) are thought to be suitable fit functions of empirical data, for 
which there are many proposals. The first measurements by Greenshields (1935) had 
suggested a linear relation of the form

  

(22)

which is still sometimes used for analytical investigations (this was the approach 
taken in the training session the week before!). Inserting (22) into the continuity 
equation (17), we obtain

  
(23)

This is a nonlinear wave equation which describes the propagation of the kinematic 
waves with velocity

  
(24)

  

(25)

Note that C(ρ)  is the speed of the characteristic lines (i. e., of local information 
propagation), which is density dependent. In contrast to linear waves, the character-
istic lines intersect, because their speed in congested areas is lower. This gives rise 
to changes of the wave profile, that is, to the formation of “shock fronts”, while 
the amplitude of kinematic waves does not change significantly.

3. hyBRID PaRTIal DIffeReNTIal eqUaTION 

For the construction of a hybrid partial differential model the basic idea is to 
use a macroscopic model for the highway, but rely on some of the information from 
the microscopic model. As earlier we consider one lane and no overtaking. We use 
equation (17) and Pipes rule (7) [2,4]. It is convenient to write (see Figure 1) the 
position for the i car as Xi(t) = ih and its velocity Ui(t) = U(ih,t) where h is a typical 
spacing between cars (∼ 10m). 
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Define the dimensionless variables

  

(26)

Using these new variables equation (17) reads

 
  

(27)

and Pipes rule can be written in the form 

 

 

(28)

Using the lengths values given and neglecting terms of order O(10−2) and 
smaller one gets for (28) 

  

(29)

where C is the only information left from Pipes rule and is given by

  
(30)

Dropping the ∼, note that the variables X and x are not the same, i. e., X 
is a Lagrangian variable and x an Eulerian variable, so we can not solve (27) and 
(29) directly. To relate X and x note that dx/dt = u(x,t) and x(0) = X defines x(X,t). 
Also note that

  
(31)

and by conservation of the number of cars we have

  (32)

and so

  

(33)

  
(34)
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Then the following applies

  (35)

and consequently

  
(36)

So we can formulate a idea for BRISA: use the floating and the automatic data  
to estimate u and ρ at discrete points. Interpolate and use as initial data for solving 
the equations

  (37)

  (38)

for 0 < t < 102, compare with the observed data (do some averaging) and then repeat…

This requires to solve (37) and (38) but this set of equations have very strange 
properties [5, 6, 7] namely that shocks and rarefaction waves coincide. 

The main “peculiarity” is that we can rewrite both equations as 

 
  

(39)

  (40)

Also the system is effectively linear in Lagrangian variables

 
  

(41)

  
(42)

This facts posses major theoretical challenges namely, how to characterize and solve 
such systems. Consider the Jacobian

 
  

(43)
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Hence no shock can develop unless ρ → ∞, i. e., only with overtaking or accidents. 
Given ρ(X,0) = ρ0, U(X,0) = U0 we can integrate and obtain a solution in the La-
grangian frame with the form 

 
  

(44)

And so ρ → ∞ in finite time for suitable U0.

4 CONClUSION aND RemaRkS

We have examined various aspects of traffic flow modelling. We first examined 
the simplest case of the Pipes rule assuming that the response time was null. We 
have obtained a explicit solution for this case. Unfortunately, the solution given does 
not explain the observed density waves usually found in traffic flow. 

We therefore turned our attention to a statistical physics model. We wrote the 
Hamiltonian equations of motion based on Pipes rule and obtained the expression 
for the partition function and density distribution of cars assuming that each car is a 
particle coupled to a heat bath. We have also shown that the information that can 
be obtained from this approach could be included in a macroscopic model.

We then considered an hybrid partial differential equation approach. We have 
establish a connection between a microscopic follow-the-leader model based on 
ordinary differential equations and a macroscopic continuum model based on a 
conservation equation. We have found that the solutions of this system of partial 
differential equations have very strange properties, namely that shocks and rarefac-
tion waves coincide in the same model. This fact posses major theoretical challenges 
namely, how to characterize and solve such systems.

Although the study group came to some results for the proposed onslaught, a 
particular exact solution, a statistical physics model and a hybrid partial differential 
equation, this last topic needs further research and a more sophisticated theoretically 
work is needed. 
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