
hIgh avaIlaBIlIty telematIc management system 263

high availaBiliTy TelemaTiC
managemenT SySTem

Tiago Dias1, Jorge Lopes1, Gonçalo Abreu2, Eduardo Lopes3

1: Brisa Auto-estradas de Portugal
Quinta da Torre da Aguilha, 2875-599 São Domingos de Rana, Portugal

e-mail: {tiago.dias, jlopes}@brisa.pt, web: http://www.brisa.pt

2: MakeWise, Engenharia de Sistemas de Informação
Rua Dr. Francisco Sá Carneiro n.o 4 R/C Esq. 2500-206 Caldas da Rainha

e-mail: goncalo.abreu@make.com.pt, web: http://www.make.com.pt

3: Armis, Sistemas de Informação
Rua Eugénio de Castro, n.o 248, Esc. 144, 4100-225 Porto, Portugal

e-mail:eduardo.lopes@armis.pt, web: http://www.armis.pt

keywords: Telematics, High Availability Solutions, ITSIBus, Service Oriented
Architectures, Traffic Management

aBSTRaCT

An efficient use of ITS resources depends on the information and communi-
cations architecture that enables the optimal use of technology, information and,
increasingly, services, available across the variety of ITS applications and systems. This
is especially true for quality of service requirements, namely availability.

The current article focuses on architectural concerns in the development and
deployment of the VMS operation component of Traffic Atlas. This component is
cross-cutting in regards to the multi-layer service oriented architecture of Traffic At-
las; in order to simplify our approach a VMS-centric approach is taken at each layer.

1. INTRODUCTION

The rapid evolution of technologies, competitive market and lack of standard-
ization has given rise to the creation of products which generally prohibit the inte-

264 2007 — ReseaRch & Development + InovatIon

gration of legacy systems without significant reengineering [1]. Because of this, the
various systems which together provide overall traffic and toll plaza management are
normally operated independently from dedicated workstations. This however inhibits
the operator’s decision-making abilities, especially in real time situations, impacting
on the end service level provided.

In their development of Traffic Atlas, Brisa launched a process whereby data
from disparate systems is collected, harmonised, aggregated and enhanced to form a
single, optimised interface. The innovative aspect of Traffic Atlas lies in achievement
of the real time integration of fragmented data streams sourced from fundamentally
differing systems possessing varied operational functionalities. The challenge was
heightened by the diversity of these systems in functionality, application (including
CCTV cameras, emergency systems, weather stations and toll plaza management
systems) and generation. The Traffic Atlas system represents a novel application of
various ICTs (information and communication technologies) which build a common
platform middleware from which the transmission, receipt and recording of data,
voice and video information is integrated and displayed in a standard format on a
map-based user interface.

2. The TRaffIC aTlaS SOfTWaRe PRODUCT lINe

Brisa Auto-Estradas de Portugal, founded in 1972, is the largest Portuguese
motorway operator and an important player in the traffic sector in Europe. Brisa
currently operates, on a concession basis, a network of 11 motorways constituting
the main Portuguese road links, connecting the country from north to south and
from east to west. The total length of motorways in the network is more than 1100
km. Brisa owns various companies specialising in motorway services aimed towards
increasing in its own operating efficiency and improving the quality of the service
provided to customers. The company is known internationally for the deployment of
the automatic pass-through toll systems.

Traffic Atlas, shortly named “Atlas”, is a web-based product for motorway op-
eration and management. It’s designed for use in a wide area of operation-related
environments. It has been developed by Brisa for internal usage and is currently the
main working tool for Brisa’s control room (operations and tolling), maintenance
teams, operation managers, external law forces and call-center.

The central design in Atlas has been that of a software product line. Software
product lines are set to create a managed set of components meeting the gen-
eral requirements of a market segment, instead of developing a customer-centric
application. This design enables Atlas to easily adapt to new requirements and

hIgh avaIlaBIlIty telematIc management system 265

configuring solutions for different deployment scenarios. Support for a different
CCTV product or integrating a new kind of road-side equipment is easily achieved
in Atlas due to the pervasive usage of two essential design-patterns: Provider/
Adapter and Observer [2]. The Provider pattern is used where Atlas should not be
bound to a specific external system type; examples are Providers for video-walls,
CCTV or Variable Message Signs (VMS). It works basically by defining an interface
that all providers must follow and, by means of a configuration point, the actual
provider is designated for each element. The Observer pattern is used for decou-
pling cross-cutting actions from operational code. This patterns works by defining
an event which is triggered throughout the code, then handlers for this event are
registered, each doing a specific task, some logging actions or alarms to database
others to change the state of a particular equipment or generate a human alert.
The events defined by these means are available for future usage for extensions
and don’t require changes to existing code. We are also using a Hook Operations
[3] design-pattern when the action taken outside the main code has to return an
effect to the original code (namely when validations are required). A more generic
approach could be obtained using aspect oriented programming [4]. Our Provider
design-pattern approach is consistent with the higher-level of multi-layer service
orientation in Atlas. Typically for each Atlas component there is a web service
that is available for the use of the interface, internally this service is composed of
distinct data-access and logic layers and may also consume an external service by
means of a provider.

The Atlas interface is fully web-based in order to avoid the need for other
client-side software other than a standard web-browser. This feature simplifies de-
ployment of new versions as well as makes it simpler to provide redundancy and
fault-tolerance. Additionally, in order to achieve a richer and more responsive client
interface without requiring specialized client software, Atlas is making an increasing
use of Ajax (Asynchronous Javascript And XML). When compared with most ITS in-
terface clients (which are GIS based) Atlas has a different approach for its’ mapping
interface. Instead of basic geographic maps, Atlas also provides cognitive mapping
[5] which are schematic representations of a motorway network. The schematic
nature of such representations makes it easy to capture user attention to specific
road-elements, incidences or equipment. Due to its’ simple geometric nature, this
approach is also more appropriate for implementation as a web-based interface than
a GIS based approach.

266 2007 — ReseaRch & Development + InovatIon

3. TRaffIC aTlaS SeRVICeS

In Atlas, each type of road-element, incidence and equipment represented in
the mapping interface has its’ own information and management interface. Each of
these maps onto a different Atlas service component (already mentioned regarding
the service orientated architecture). Currently Atlas is composed of the following core
modules: Cognitive Mapping for interface; Atlas.CCTV; Atlas.VMS; Atlas.Weather; At-
las.Tunnel; Atlas.Traffic Counter. A different set of Atlas modules offers cross-cutting
functionality that is available in context for the core modules: User access control;
CAD (enables online editing of motorway elements); Logging (stores historic data for
business intelligence processing); News service (delivers multi-channel notifications and
manages subscriptions); Video-wall management; Personal video-wall; Video-server
(recording and storage); Operational management matrix (for communication channels
management). Atlas also displays incidences obtained and managed in an incidence
management provider. This provider offers information from and interaction with inci-
dences (any kind of occurrence on the motorway) and assistance forces and vehicles.

4. The ITSIBUS aRChITeCTURe

ITSIBus – Intelligent Transportation Systems Interoperability Bus [6] is a Service-
Oriented Architecture originally developed in ISEL (Instituto Superior de Engenharia de
Lisboa). Its main motivation is to facilitate integrated solutions by defining a techno-
logically independent, open standard, of an architecture that focuses on systems and
services. Brisa’s toll plazas are managed by a solution that was developed according
to ITSIBus and is in production since 2004. The elected technological binding for this
product was the Java framework, using Jini for the service-oriented implementation.

5. TelemaTIC maNagemeNT SySTem

Telematic Management System (TMS) is the Traffic Atlas solution for the
operational management of different types of telematic equipments. The main
objective was to evolve from having heterogeneous and monolithic systems,
unconnected and unaware of each other, to a comprehensive and integrated
solution, based on open standards, to which developers and vendors can seam-
lessly contribute. The whole system was developed according to ITSIBus (open)
standards, and currently is managing the entire set of Brisa’s network of VMS
equipments, weather stations and other equipments already in the works (visual
incidence detection agents, etc.).

hIgh avaIlaBIlIty telematIc management system 267

Physical devices are integrated in the ITSIBus architecture through the use of
adapters – software components which abstract the details of the device’s commu-
nication mechanism and are an ITSIBus service in their full right. These adapters are
also a concretization of the Adapter design pattern seen in [2]. Adapters are devel-
oped for each particular VMS model/vendor. An adapter represents a VMS in the
system, providing its functionality through a service; while originally, this functionality
would only be available as a proprietary (lower level) protocol.

The VMSs (in the form of their adapters) are managed by a Telematics Manage-
ment Server which constitutes the main orchestrator of the entire system, process-
ing requests from external systems and performing management and maintenance
operations on the VMSs. The first approach towards the TMS architecture included
an instance of an adapter for each VMS, running in dedicated hardware located on
the field, near each VMS.

…

ITSIBus

TMS Server

VMS Adapter VMS Adapter VMS Adapter

xxxxxxxxx

Diagram1: Initial TMS Architecture

With the objective of lowering deployment and maintenance costs, adapters
running near each VMS were moved to a central location inside TMS by virtualiza-
tion as a pool of the adapters for on-demand usage. The adapters run within the
TMS Server context and, every time there is a need to communicate with a VMS,
an adapter is obtained from the pool and properly configured to establish a con-
nection with the VMS.

Nevertheless, in case a particular VMS solution doesn’t support a networked
communications channel for its interaction protocol, the local adapter solution can
coexist in TMS with this centralized adapter pool solution.

268 2007 — ReseaRch & Development + InovatIon

Shifting our view from VMSs to the central system, the entire TMS system is
a distributed application comprised of several sub-systems. Bellow is a schematic
representation of the entire system:

 ITS-IBus

VMS Adapter

VMS Adapter
VMS Adapter

VMS Adapter

VMS Adapter

Adapter Pool

TMS
Broker

VMS
Registry

Alarm
System

TMS WS

Other
Services

TMS Server

Diagram2: Current TMS Architecture

As stated before, the TmS Server is responsible for managing several VMSs,
implementing the lower level business logic and processing operational requests from
other systems. It contains a pool of VMS adapters that provide communications with
physical VMSs.

Amongst other things, the Server is responsible for detecting VMS content
changes; placing default messages in a VMS; periodically adjusting the VMS’s internal
clock; monitoring hardware alarms.

The TmS WS component provides the ITSIBus TMS service functionalities
through Web Services. It is a gateway that non-ITSIBus systems can use to interact
with the TMS. Note, however, that the TMS WS communicates with the TMS through
ITSIBus with all the inherent advantages (service location, redundancy, etc).

The TMS Server starts without absolutely any knowledge about the VMSs pres-
ent in the network. One could find all the VMSs through an auto-discovery process,
as defined in the ITSIBus standard, if the adapters were standalone services. However,
since the adapter pool approach had obvious advantages in this particular scenario,
a VmS Registry was implemented with the purpose of supplying information about
the VMSs installed in the network. It is inquired as part of the VMS Server start-up
process, supplying it with information about every VMS, such as: IP Address, Port

hIgh avaIlaBIlIty telematIc management system 269

Number, Default Content Message, Topology and Supplier (to choose the correct
adapter implementation). In order allow adding new VMSs during TMS runtime,
when there is a request regarding a VMS which is yet unknown, TMS inquires the
Registry to obtain the new device details.

The alarm System, available through Web Services, allows the delivery and
notification of Alarms and Events generated by TMS. The processing and application
of higher-level business rules in response to an event or alarm is handled by Traffic
Atlas alarm module. A Java based JMX monitoring platform will be introduced in
future TMS versions to allow for a more integrated and open solution in regards to
the ITSIBus standard.

Given the architecture presented this far we can see that there is no significant
impediment for having several TMS Server instances running at the same time, even-
tually each managing a different set of panels. But what about having more than
one Server instance managing the same set of panels, for redundancy purposes? This
is also a possible scenario with no drawbacks other than the fact that each instance
would be monitoring the whole set of VMS, causing unnecessary network traffic
since they would be doing repeated work. To address this issue the TmS Broker was
conceived. The Broker provides a lease to a Server, allowing it to be monitoring the
VMSs. The first Server to get the lease is responsible for monitoring, while subse-
quent Server instances are denied the lease. Thus, only one Server can be monitoring
at a given time. This Server must periodically renew the lease, otherwise (ex. if the
server goes down) it becomes available again to supply to another Server.

6. VaRIaBle meSSage SIgNS SUPPORT
IN TRaffIC aTlaS

Atlas works as an intelligence layer over the VMS. It takes a flat panel and turns
it into a powerful operational tool by giving the VMS extended functionalities, both
in the operational and maintenance fields. One of the purposes of the Atlas VMS
intelligence layer is to be pro-activate by providing suggestions for the most effec-
tive message according to real-time traffic and weather situations. During normal
VMS operation several actions (ex. messages signalled, namely human or automatic),
alarms and states occur, to provide for auditing and business analysis every single
status and action taken is logged (using the observer design-pattern from the Atlas
framework already presented in section 2). Making use of the provider design-
pattern implementation, also presented back in section 2, and a modular interface,
different types (models/vendors) of VMS can be operated, maintained and provide

270 2007 — ReseaRch & Development + InovatIon

for analysis with Atlas. To achieve this, besides a client interface for manual VMS
interaction, several layers of applications and services where created.

In order for the Atlas VMS interface to be user-friendly and optimize interactions
it centres on an editable display (depending on state and permissions) of the VMS.
State information is presented when appropriate (ex.: the VMS is not reachable due
to maintenance). A near-by CCTV with coverage of the VMS is available for visual
validation if required (usually for maintenance purposes). CCTV access is one of a
set of functionalities that are at a distance of one click: erasing the current mes-
sage (sets the default message); accessing the most used messages for the current
VMS or a set of context-based pre-defined messages; even navigating to other VMS
(a list is always present). For integration with the incidence management platform
that accompanies Atlas, or for using on context of alerts regarding dynamic context
changes (namely weather), a message suggestion interface extends the normal inter-
face. This interface provides the operator with a message suggestion with computed
distance indications and context based text obtained from a rule based system. The
rule based system is quite simple and uses a set of parameters like incidence typifi-
cation and location (relative to the VMS). For periodic automated tasks related with
VMS, namely a screen-saver that changes the position of the current time display in
inactive VMSs, Atlas uses an agent implemented as a Windows Service. This agent
is also responsible for the pooling of VMS providers that aren’t synchronous (which
isn’t the case of TMS) and for the evaluation of context conditions that may trigger
message suggestion alerts (incidence and weather related).

Alarm information is available in real-time from TMS at the Alarm System Web
Service. This service uses an event system (observer design-pattern) to take actions
on the alarms; one of the actions is generic and persists this information for future
reference. Atlas also offers interfaces for auditing actions and alarm status (and his-
tory). These are generic interfaces Atlas also provides for other times of equipments
(like CCTVs). A specific history interface is available only for the VMS component in
Atlas in order to provide access to the full history of messages present at a particular
VMS (or set of VMSs).

As equipments are deployed to the field (and sometimes removed) Atlas had
a requirement of enabling real-time addition and edition of VMS equipment. This is
done through a CAD like interface which is simple enough for non-specialized us-
age. This interface enables mapping the positioning of a VMS in the infrastructure
as well as editing the VMS configuration parameters (addresses, model/vender for
adapter selection at run-time, etc.). This enables testing VMSs right after these are
deployed in the field.

hIgh avaIlaBIlIty telematIc management system 271

7. a mUlTIPlaTfORm, hIghly
aVaIlaBle aRChITeCTURe

Prior to the integration of TMS in the Traffic Atlas deployment at Brisa, other
VMS management software was used. This provided no service level integration with
Atlas1 and had serious availability and reliability issues. TMS was created to overcome
these limitations, the ITSIBus reference architecture was chosen for its proven results
in Brisa’s tolling implementation and because ITSIBus matched the requirements of
both VMS integration and integration with Traffic Atlas.

7.1 architecture overview

TMS exposes VMS functionality as a Web Service which is consumed by the
Atlas service layer. Atlas provides for the service dependencies of TMS, namely a
VMS registry interface and an Alarm handler. The following scheme presents these
integration points as well as more detailed system architectures for Atlas and TMS:

Diagram 3: Traffic Atlas systems architecture

1 Integration for these systems had to be done at low levels, namely at the Data layer via database

triggers and table monitorization.

272 2007 — ReseaRch & Development + InovatIon

Atlas’ own internal architecture was described in generality back in section 2.
The previous scheme details this architecture for the VMS component. The web-based
interface consumes a business logic service layer offered by a Web Service (identified
by VMS in the Atlas Web Services container box); this Web Service is also used by
the VMS Agent as it also needs to make usage of business logic functionalities. Other
services also based on this logic may use the functionalities already exposed by the
VMS Web Service or create new Web Services, one case is a GIS synoptic system
used for video-wall display (VDWSinoptic). Additionally the VMS Registry and TMS
Alarm Handler both use the service layer directly as both are exposing additional
VMS related functionality. The TMS system architecture has already been detailed in
section 5. A determining design choice for TMS which enabled the high-redundant
deployment architecture described next was that TMS is not state full and doesn’t
depend on a persistence store, like Atlas does.

7.2 deployMent architecture

The system architectures of both Atlas and TMS we the enablers of a high-
redundancy deployment architecture based on hardware network balancing compo-
nents. Additionally, as TMS is implemented in Java, deployment of TMS can be done
to different operating systems, namely Windows and Linux. The deployment in Brisa
has two separate logical servers, one where the Atlas application runs and another
server for the TMS Service. For this deployment it was required that when Atlas might
be unavailable the TMS monitoring service would be stopped and thus VMS would
turn off (after some minutes without being pooled), indicating a malfunction. This
way the TMS Broker component was deployed in the same server as Atlas.

Each logical server is duplicated in two physical servers (if required, more could
be added), the scheme below presents the four resulting servers along with the
network load balancer components that enable redundancy (these are explained in
more detail next).

Atlas is active in both web-application servers and invokes TMS through means
of a network load balancer (NLB #3). Network load balancers have two main modes
of operation. One of the modes redirects requests received to a set of redundant
servers which share the total load, this is the case of requests to the TMS Web
Service (via NLB#3) and to Atlas (NLB#1). As the TMS Service is stateless by design
and requires no persistence store, all running instances are available to service Atlas
requests but only one is monitoring the VMS pool, the Broker decides which. The
identification of the monitoring service is kept in memory by the Broker (the icon
in the scheme). The TMS service instance responsible for monitoring the VMS pool
is located in srvcco010 and represented with an icon. In case of failure of that

hIgh avaIlaBIlIty telematIc management system 273

service the Broker will service a request from a different server for the monitoriza-
tion lease which will be in charge of monitorization a few moments after the failed
service actually failed.

The Broker could not become a single point of failure, so a second mode of
NLB operations was required. In such mode an NLB element redirects requests to
the first active service in an ordered list of services; in case the first preference has
failed the list is followed in search of a working service provider, this is the case of
the TMS Broker Service with NLB#2. This way if a Broker service fails requests for
leases (by non-monitoring nodes) and lease renewals (by the monitoring node) are
redirected to a second Broker instance (at srvcco002) and, depending on the order
of the requests monitorization is started at a new node or is renewed by the cur-
rently active monitorization node.

Additionally to supporting our high-availability architecture, both models of net-
work load balancing allow release deployment without affecting system availability
(by deploying separately at each node).

Diagram 4: Deployment architecture in Brisa

8. TeSTINg aND ValIDaTION

TMS product development was accompanied by a testing approach based on
several tests at different levels. From the beginning unit tests were applied, each
testing a specific and small system component for a particular functionality. A wider
test surface was the focus of functional and acceptance tests, following all of the

274 2007 — ReseaRch & Development + InovatIon

more significant development stages. In scenarios where both types of tests had to
involve more than one VMS, a simulator was used, along with a real VMS unit.

Prior to deployment of TMS releases, another test approach was taken. This
approach was composed of a set of certification tests following the functional/ac-
ceptance test approach but this time using only real VMS units. At this stage all of
the release functional requirements were validated. Non-functional requirements (or
quality of service requirements) were the focus of stress tests.

Stress tests were designed to simulate in a short amount of time a number of
real operations. This is done by an extreme increase in the regular frequency these
operations have under predicted or existing (for already deployed functionality) usage
scenarios. With this stress approach longer periods of TMS activity (months to years)
were simulated in lower units of time (hours to days).

9. RelaTeD WORk

TMS is also suitable for managing other kinds of equipments other than VMS.
Weather stations are one kind of such telematics equipment. CCTV cameras could
be another, although the current CCTV management architecture in Atlas Telematics
is totally distributed between client nodes and sensor nodes (that process the CCTV
camera signals) and thus is not part of TMS. Atlas’s distributed CCTV architecture
won’t be considered in the following comparisons as it would require a more elabo-
rate presentation that is out of the scope of this paper. Even though, works similar
in architecture to TMS (with a centralized approach) can be found for CCTV camera
networks. [7] presents a video sensor network in which video signal processing is
done in a load-balanced environment. There is a number N of video signal process-
ing nodes among which Y video signals are distributed for processing. In [7] normal
values for Y can be as large as 4 times N, as each node can process up to 4 video
signals. [7] focuses mainly on correlation processing between distinct sensor sources
in order to track vehicles as they pass in different sensor ranges. This processing is
done on a unique node, based on high level data resulting from the processing of
individual sensor video signals from the load-balanced signal processing nodes. [7]
is clearly an agent system requiring a level of artificial intelligence capabilities while
Atlas.Telematics is limited to more discrete decision support functionality, namely
through rule based sources for alerts or message suggestions (based on incidence
typification which is carried out by a third party, usually human). In the Atlas Tele-
matics architecture there is no specific need for load distribution among nodes as
one node is capable of supporting enough equipment (in our case all of Brisa’s
motorways VMSs). Even though, in case a limit is reached, the broker element can

hIgh avaIlaBIlIty telematIc management system 275

be adapted to provide leases for equipments instead of leasing the responsibility for
the whole system. This would turn the broker into a very similar component to [7]’s
software load manager. The main focus of [7] is not on high-availability, the archi-
tecture presented has a unique point-of-failure at the correlation processing node
and another at the load-balancer. In order to achieve redundancy, the correlation
processing node might be replicated by using a similar approach to TMS, although
there would be some issues as the solution is not stateless while TMS is. The load-
balancer point of failure is also shared by the Atlas Telematics architecture, only in
Atlas Telematics current deployment the load-balancer is a network hardware ele-
ment and in [7] it’s a software element.

Atlas Telematics provides decision support (through a rule based system) only at
a tactical (local) level. A strategic (regional) level approach is a matter of future work,
based on ongoing regional projects in which Brisa is involved and which have already
led to the adoption of DATEX2 with software support documented in [8]. [9] and
[10] present architectures for strategic level approaches where knowledge bases are
at the core of a multilayer (artificial intelligence) agent system. Their general approach
is to have a dedicated agent for each local level and a coordinator that implements
the strategic level by validating local results against each other. At its current stage,
Atlas Telematics could provision the sensor/actuator service level as well as work as
the human interface in such decision support architectures.

CONClUSIONS

This paper has exposed a specification of a conceptualization used to implement
an high-availability solution for traffic and telematic management systems. Here are
some conclusions resulting from the deployment process:

•  Efficient use of ITS resources depends on an ICT architecture that enables
the efficient use of technology, information and increasingly, services available
across the variety of ITS applications and systems.

•  The use of studied patterns for system design and deployment empowers the
solution efficiency and robustness, essential for critical environments.

•  Software product lines and the architectures presented (namely ITSIBus) host
the ideal environment for other types of telematic equipments, this is why
ongoing work includes supporting weather stations in TMS and extending
TMS’s functional support for any type of telematic message devices (namely
fuel price panels).

276 2007 — ReseaRch & Development + InovatIon

RefeReNCeS

1. J. Lopes, J. Gomes, L. Osório, “Open Architecture for Road Tolling and Traffic Management
Services”. ITS World Conference 2006, London, 2006.

2. E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design Patterns: Elements of Reusable
Object-Oriented Software”, pgs. 139 and 293. Addison-Wesley, 1995.

3. S. Black, “Design Pattern: Hook Operations”. http://www.stevenblack.com/PTN-
HookOperations.asp, July, 2000.

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier, M.,
Irwin, J., “Aspect-Oriented Programming”. ECOOP, Springer-Verlag, 1997.

5. J. Lopes, J. Bento, “Cognitive Mapping for ITS Services”. ITS World Conference 2005,
San Francisco, 2005.

6. C. Goncalves, B. Antunes, A. Amador, “ITSIBUS: Jini™ and RFID Technologies Enable
Interoperability in an Open, Service-Oriented Architecture for Toll Management”. JavaOne
2005, San Francisco, 2005

7. G. Kogut, M. Trivedi, “A Wide Area Tracking System for Vision Sensor Networks”. 9th
World Congress on ITS, Chicago, October 2002.

8. C. Costa, T. Fernandes; J. Lopes, “DATEX2.Toolkit – A working example of DATEX2”. To
be presented in ITS in Europe 2007, Aalborg, Denmark, 2007.

9. J. Hernandez, J. Cuena, M. Molina, “Real-time Traffic Management through Knowledge-
based Models: The TRYS approach”. ERUDIT Tutorial on Intelligent Traffic Management
Models, Helsinki, Finland, 1999.

10. H. Kirschfink, J. Hernandez, M. Boero, “Intelligent Traffic Management Models”. European
Symposium on Intelligent Techniques, Aachen, Germany, 2000.

