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ABSTRACT

This paper presents an IEEE 802.11p full-stack prototype implementation to data
exchange among vehicles and between vehicles and the roadway infrastructures. The
prototype architecture is based on FPGAs for Intermediate Frequency (IF) and base band
purposes, using 802.11a based transceivers for RF interfaces. Power amplifiers were also
addressed, by using commercial and in-house solutions. This implementation aims to
provide technical solutions for Intelligent Transportation Systems (ITS) field, namely for
tolling and traffic management related services, in order to promote safety, mobility
and driving comfort through the dynamic and real-time cooperation among vehicles
and/or between vehicles and infrastructures. The performance of the proposed scheme
is tested under realistic urban and suburban driving conditions. Preliminary results are
promising, since they comply with most of the 802.11p standard requirements.

I. INTRODUCTION

The Wireless Access in Vehicular Environment (WAVE) [1] refers to a set of emerg-
ing standards for mobile wireless radio communications. WAVE or Dedicated Short
Range Communications (DSRC) 5.9GHz as is also known in the USA, is part of the Fed-
eral Highway Authority’s Vehicle Infrastructure Integration (VII) initiative supporting Ve-
hicleto- Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) communications for emerging
Intelligent Transportation Systems (ITS). WAVE systems will be used due to low latency
and high data rate requirements in a high mobility environment. The WAVE standard
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Fig. 1. Developed prototype (OBU and RSU) [5]

is being developed by IEEE to respond at the necessity to solve a common problem of
many worldwide cities, vehicular traffic and related esafety. In Europe the European
Commission has also allocated the 5.9GHz band for priority road safety applications and
inter-vehicle and infrastructure communications. The intention is to ensure the compat-
ibility with IEEE standards even if the band is not exactly the same, but frequencies will
lie close enough apart to enable the use of the same RF components.

The equipment for building the Road Side Unit (RSU) and the On Board Unit (OBU)
prototypes (Fig. 1) is composed by the following set of devices: Field-Programmable
Gate Array (FPGA) [2], Transceiver [3], Power Amplifiers - one of-theshelf [4] and an-
other developed by the authors for the 5.9GHz band - and appropriate antennas. The
Altera Stratix [l FPGA development kit is fitted with two analog-to-digital converters and
two digital-to-analog converters which enable the generation and the acquisition of IF
signals, respectively, which are up/down converted to the 5.9GHz band by the trans-
ceiver. The transceiver has a PA attached for the uplink. For the downlink, the antenna
is directly connected to the transceiver.

To describe the work in more detail, this paper is structured as follows: in Section Il
the system architecture and each layer implementation overview is provided, in Section
Il reference scenarios and applications are presented, while in Section IV measurements
results are summarized. Finally, conclusions and future work are drawn in Section V.

Il. ARCHITECTURE

Our approach follows the WAVE layer model, with particular focus on developing
an adaptive connectivity to an open service infrastructure that adds value to the RSU
standardisation effort by creating the conditions for systems from different vendors to
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Fig. 2. OSI/WAVE protocol stacks mapping.

plug on a dynamic basis. Thus, the upper layers approach follows the OSI Model/WAVE
Model ( Fig. 2) based on IEEE 1609.1 standard [6], and proposes a normalised commu-
nication with client applications or Resource Management Application (RMA) accord-
ing to the standard, considering an adaptive service framework (Fig. 3). The network
layer follows the IEEE 1609.3 standard [7] and provides services to WAVE devices and
systems. These services include management and data services within WAVE devices.

The lower layers support a single-channel system with the IEEE 1609.4 standard

[8] medium access control (MAC) and physical layers. All these layers will be described
further on this paper [5].

A. APPLICATION LAYER

The main responsibility of the application layer is to manage resources interacting
with a Resource Command Processor (RCP) on the OBU side. Considering the peer-
topeer communication model among OBUs, an OBU might also implement a resource
manager to interact with other OBUs.

While in this version the RMA is in the same computer, the proposal is to establish
a cooperation model based on an open bus as proposed by Fig. 3.

In the hard-braking application, the OBU is in permanent contact with the vehicle
Controller Area Network (CAN) bus using the On-Board Vehicle Diagnostics (OBD-II)
interface, which is usually used for vehicle maintenance, diagnostics, repair and perfor-
mance tuning. With this link, for example, it is possible to determine the acceleration
of the vehicle and detect when a driver steps hard on the brake pedal, because a sig-
nificant deceleration is detected by the OBU software [5]. Since the OBD latency may
not be appropriate for real-time applications, an accelerometer could be an alternative
solution.
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OpmSa;ce Bus

Fig. 3. The main parts of a DSRC 5.9GHz WAVE infrastructure [5].

B. NETWORK LAYER

The Network Layer is based on the IEEE 1609.3 [7] and it defines the network and
transportation services, including the addressing and data routing required for data
transference among WAVE entities. This layer can be divided into two major blocks: the
management plane and the data plane. The Network Layer is responsible for managing
connections between the Application Layers and the MAC layer as follows [5].

1- The management plane is achieved via the implementation of a specific man-
agement protocol, the Wave Management Entity. This protocol is responsible
for the advertisement of the services being provided by the WAVE devices, for
the base configuration of data connections, as well as for the maintenance of
a local Management Information Base, containing the configuration and status
information of the local WAVE device.

2 - The data plane is divided in two separate sub-blocks: the Internet Protocol (IP)
and the Wave Short Message Protocol (WSMP).

e The IP protocol is in fact an implementation of the IPv6 protocol, as it is cur-
rently known and widely implemented in other wireless communications. This
sub-block is not implemented in this prototype version.

e The WSMP protocol has a key role in the WAVE technology, since it is respon-
sible for managing the flow of short messages in a network of devices by ex-
changing data/information with very low latency.

C. MAC LAYER

The MAC layer is responsible for controlling the medium access, giving higher
priority to frames considered safetyrelevant, through the use of Enhanced Distributed
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Channel Access mechanism, and shall operate in a multi-channel scheme, supporting
a Control Channel (CCH) and multiple Service Channels (SCHs). The CCH shall be used
to transmit WSMP messages, e.g. the hard-braking, and announce services, e.g. toll
application. In the prototype, the MAC is essentially implemented by software, running
in the FPGA embedded processor. It includes a component responsible for bridging the
MAC to Physical layer (PHY) which is implemented in hardware. Since currently MAC is
implemented in the FPGA, the communication with the Network layer is performed via
a serial port (to be removed later), while communication with PHY layer is straightfor-
ward, because this last one shares the same FPGA.

1) TRANSMISSION

When the MAC detects that a frame has been received from the Network layer,
it examines the frame header in order to determine the frame type to be transmitted.
The proper MAC fields are appended and a clear channel assessment process is per-
formed. If the correct channel is tuned and if it is possible to transmit the information,
the bit sequence is passed to the PHY layer. Otherwise, the frame is kept buffered for
future retry.

2) RECEPTION

When a bit sequence is received from the PHY layer, two levels of filtering are per-
formed. First, address matching is done in hardware in order to avoid time consuming
reads from buffers by the processor. After that, detection of errors is done by analyzing
the frame check sequence. If the two operations are successful, the frame is buffered.
The MAC fields are then processed and the appropriate frames are forwarded to the
Network layer via the serial port.

D. PHY LAYER

The PHY Layer is described according to two different functions: the transmission
and the reception of bit sequences. When a transmission is being performed, the PHY
receives bits from the MAC layer, processes them and transmits to the transceiver the
appropriate physical signals to be upconverted. On the other hand, the reception chain
will initially analyse the incoming signal, process it, extract the corresponding bits and
send that bit sequence to the MAC layer. Thus, this layer can be seen as a three parts
abstraction composed by:

e Physical Blocks;
¢ An intermediate frequency sub-layer;
e “Medium — PHY" communication.

201




202

RADIO FREQUENCY - 2010

1) PHYSICAL BLOCKS

The transmission chain is responsible for the operations scrambling, encoding and
interleaving of the bits received from the upper layer (MAC).

The scrambling operation is performed to randomize the data, which minimizes
the data “DC" bias and maximum run lengths, thus implementing a code whitening
operation. One should note that the receiver will only be able to synchronize if the
transmitter avoids the existence of sequences of too many consecutive zeros or ones.
After this scrambling operation, the encoding is performed by a convolutional encoder
to ensure a Forward Error Correction mechanism.

Finally, the bit sequence is “interleaved” which means that its bits are reordered
according to a specified rule. The interleaver is defined by a two-step permutation.
The first permutation ensures that adjacent coded bits are mapped onto nonadjacent
subcarriers and the second will ensure that adjacent coded bits are mapped alternately
onto less and more significant bits of the constellation and, thereby, long runs of low
reliability bits are avoided.

The reception chain shall do the reverse operations of the ones made by the trans-
mission chain. Following the 802.11p standard recommendation, the decoding is per-
formed by an implementation of the Viterbi algorithm. The block used in our system is
based on an IP core supported by Altera.

2) INTERMEDIATE FREQUENCY SUB-LAYER

The IF sub-layer is responsible for physical signals modulation and demodulation
are directly done in a lower frequency sub-carrier (4MHz). Frequency shifting from IF to/
from RF is carried out by the transceiver.

One must stress that this sub-layer is not currently performing OFDM since this
module is still under development. For test purposes, the IF sub-layer is performing a
BPSK modulation at TMbps.

In the transmission chain, a bit sequence is received from the interleaver (previ-
ously described) and a simple NRZI coding is applied to this received signal. This coded
sequence modulates a digitally generated carrier of 4MHz at TMbps using BPSK. Phase
transitions occur when the carrier goes through zero. In-phase (I) and quadrature (Q)
signals are generated in such way they provide lower sideband cancellation when up-
converted to 5.9GHz.

The receiving chain is far more complex. The IF sub-layer receives 1/Q signals from
the transceiver, then an imagerejection mechanism (similar to the one present in the
transmission chain) is applied to retrieve only the upper sidelobe. After this, band-pass
filtering at 4MHz is applied. Synchronous demodulation is made at this point, for which
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a carrier extraction process is performed over the incoming signal. First the incoming
signal is squared, then an 8MHz narrow band-pass filtering is applied, a frequency
division by 2 is done in order to get a 4MHz signal and finally a small delay is applied
to get a 4MHz extracted carrier synchronous with the incoming signal. An integrate-
and-dump filter, a clock recovery unit and an NRZI decoder finally retrieve the baseband
signal.

3) MeDpIUM-PHY COMMUNICATION

To make transmission possible through the medium, the transceiver needs to be
locked in a specific frequency, which is selected depending on the desirable and select-
ed channel. After the transceiver is locked, an Automatic Gain Control (AGC) process
starts at the receiver.

E. OFDM BLOCKS

Orthogonal Frequency Division Multiplexing (OFDM) is one of the requirements
defined in the 802.11p standard for data transmission. This multiplexing technique al-
lows data exchange with high data rates and robustness to errors. As mentioned above,
in the current version of our system, a single modulation is being used: the BPSK modu-
lation with 1 Mbps of data rate. However, when using OFDM, it will be possible to
transmit higher data rates (Table I).

The standard specifies also some timing parameters that must be accomplished
when implementing the system. Some relevant parameters are presented in Table II
although many more parameters are specified by the standard.

TABLE | TABLE 11
MODULATION AND DATA RATES OF OFDM TIMING PARAMETERS
BPSK 9 Number of data subcarriers 48
QPSK 18 Number of pilot subcarriers 4
16-QAM 36 Number of subcarriers, total 52
64-QAM 54 Subcarrier frequency spacing 0.15625 MHz

Once again, the design and synthesis of the blocks described here were aided by
Altera’s software named Quartus-I/l. The schematic form was used to assure the com-
munication between blocks.
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Fig. 4. The OFDM Transmission Operations/Blocks: Fig. 5. The OFDM Reception Operations/Blocks:

Modulation, Pilot Insertion, IFFT and Cyclic Extension.

Cyclic Extension Removal, FFT and DeModulation

Fig. 4, illustrates the main operations performed to implement OFDM in the transmission
chain: modulation, pilot insertion, inverse fast Fourier transform (IFFT) and cyclic extension.

In this context, the operation “Modulation” represents the mapping between the
input sequence and Gray-coded constellations. Regarding the desired type of modula-
tion, different conversions shall be performed. For example, if the desired modulation is
16-QAM, each group of four bits is divided in two pairs of bits, so the first pair defines
the | value of the constellation and the last pair determines the Q value.

This process consists of a block that will generate modulation signals 1/Q that de-
pend on the chosen modulation. There is also a normalization step in order to achieve
the same average power for all mappings, but it was not represented in the figure be-
cause it can be seen as a sub-block of the “modulation” one. On the other hand, Pilot
Insertion introduces the pilot subcarriers in positions -21, -7, 7 and 21 into the OFDM
symbol (composed of 64 values). These pilot signals are added in order to make coher-
ent detection robust against frequency offsets and phase noise. The pilots shall be BPSK
modulated by a pseudo-binary sequence to prevent the generation of spectral lines.

Another important block is the one represented as Inverse Fast Fourier Transform
(IFFT). It is based on an Altera’s IPCore and it transforms data from the frequency do-
main to the time domain representation.

Finally, and in order to have a guard interval to avoid interferences between sym-

bols, one should describe the Cyclic Prefix, which is basically to place in beginning of a
given OFDM frame a copy of the end. To complete the transmission chain the signals
are converted to IF band and then transmitted to the air.
In the reception chain, Fig. 5, when information is received it is down-converted to base
band where the cyclic extension is removed and delivered to the Fast Fourier Transform
(FFT) block to transform the information from time domain to frequency domain. Then,
a process is initiated that reverts all of the processes described in the transmission chain
to recover the transmitted information and deliver it to the “Descrambling, Decoding
and Delnterleaving” block, as can be seen in Fig. 5.
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A) HARD-BRAKE SCENARIO. B) ACCIDENT SCENARIO. C) TOLLING SCENARIO

Fig. 6. Services scenarios

I1l. SCENARIOS

As already mentioned, this work is based on three possible scenarios: hard-brake
(Fig. 6a) and accident (Fig. 6b) for broadcast based services and tolling (Fig. 6¢) for
point-topoint based services.

In the hard-brake or accident scenarios, two OBUs are installed in two different
vehicles. When a driver steps hard on the brake pedal or a crash occurs, an 802.11p
frame is transmitted. For the tolling scenario, an OBU is installed inside a vehicle and
a RSU is located in the motorway road side. The RSU periodically transmits a beacon
signal. When an OBU receives the beacon it responds to the RSU indicating that the
signal was received.

In Fig. 8 one can observe pieces of the motorway (the two tracks in the bottom)
and the road (upper track) used for testing. These are open roads at constant height
(near sea level) with some vegetation. The biggest trees between the two motorway
tracks are about 3.5 m high.

Fig. 7. Urban scenario used for tests Fig. 8. Bird’s eye view of the roads used for test.
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Fig. 9. Estimate of BER versus SNR in laboratory environment.

IV. RESULTS

After the development of the prototype, several tests were performed in labora-
tory in order to check the correct functioning of the system (Fig. 9). Then, the system
was validated through outdoor environment tests. To accomplish these goals an RSU
was placed near the road and the OBU was placed inside of a car.

After this, some parameters were measured to evaluate the system and help to
find the best place for the antenna location (Fig. 10 and Fig. 11).

Fig. 10 (roof location) shows that all bits were received correctly but in Fig. 11 it is
possible to see that for the same location the Frame Error Rate (FER) it's not zero. This
is due to the fact that some frames are lost in the communication, so it does not enter
to the Bit Error Rate (BER) calculation, but even with some frames lost, the roof is by far
the best place to put the antenna. Other tests were made with RSSI (Received Signal
Strength Indicator) and the input power. They both confirmed that the roof was the
best place to put the antenna.

These two parameters show the number of wrong bits or frames for different
speeds. Such measures were done at a maximum speed of 30 km/h in the urban sce-
nario (Fig. 7), and the distance achieved was about 400m where the communication
was lost.

Despite not measured the BER and FER at higher speeds, communication was
tested positively between a vehicle moving at 100 km/h and a stopped vehicle
beside the road, when separated by nearly 1000 meters. The same distance was
achieved between two cars moving in opposite directions, with a relative speed
above 240 km/h.
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V. CONCLUSIONS

With line of sight, communication was possible with low FER/BER at approximately
400m with 22 dBm EIRP. However, even at shorter distances, communication is affected
by obstacles such as trees or buildings. This effect can be overcome, of course, with
higher transmitted power.

In the other scenario tested (tolling) the results were very satisfactory because
we tested it in open road condition. Lineof- sight was usually available, but sometimes
it was lost due to vegetation and other vehicles. Communication is possible at higher
distances, approximately 1000m with the same EIRP of 22 dBm.

It is expected that OFDM chain blocks, in the near future, will enable improved
FER and BER performance because these Tx and Rx chains are capable to prepare and
handle errors introduced by the radio channel.

The messages transmitted and received across WAVE protocol do not actually
implement security aspects as defined in IEEE1609.2. To improve the security of our
services, future work will embrace these features in our implementation.

Relatively to MAC layer, its implementation is currently based only in IEEE 802.11
[9]. Future work should embrace the functionalities described in the IEEE 1609.4 stan-
dard (channel coordination is already under implementation).
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